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We consider the motion of a spacecraft acted on by a controlling acceleration in the plane
perpendicular to the absolute velocity vector of its center of gravity. Control laws which
make it possible to obtain the solution in analytic form are developed.

1. The motion of a spacecraft in a central gravitational field under the action of the
controlling acceleration W in the plane perpendicular to the absolute velocity vector V
of its center of gravity O, can be conveniently considered in a rotating right-hand orthogonal
system Oxyx whose axis y coincides with the radius vector r constructed from the center
of gravity O to the point O,, and whose axis x is directed in the direction of motion in such
a way that V lies in the plane xy. The orientation of the axes Oxys relative to the inertial
coordinates O£n € is defined (Fig. 1) by the longitudinal {} of the ascending node, the
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inclination i of the instantaneous orbital plane
relative to the equator, and the range angle u.
The controlling acceleration vector W is map-
Fig. 1 ped onto the normal and binormal to the trajectory
of motion by the projections W, and W,; the inclina-
tion of the absolute velocity vector V to the local horizon is defined by the angle 8 (Fig. 2).
The equations of motion of the spacecraft are

V= —W,sin0 4 o,Vy, Vy'= Wycos0 —0,V,—¢
0= W4+ o,V,, o= —VuIr, &= go (Ro/r)? (i.1)
The rates of change of the angles of the rotating axes relative to the inertial axes are

defined by the familiar differential equations

dQ__  sinu di __ du __ . s
E—“’"m' Ft_m,,cosu, ﬁ._——m,—musmuctgz (1.2)
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The exact solution of this problem for ¥ =0 and W, = const for a circalar orbit is
cited in {1 and 2], while [3] also contains an approximate solution for the case of an el-
liptical orbit. Paper [4] contains a solation for the case W,=0,W,= kr—3. Further on we
shall write out the laws of variation of W, and ¥, which enable us to obtain the exact
solution of the problem of motion of the spacecraft in general form (for circular, elliptical,
parabolic, and hyperbolic orbits).

2. Equations (1.1) have the energy integral
YoV? — gr=1h 2.1

Moreover, the first of these equations with allowance for the fourth can be transformed
into

dVa) g
T n {2.2)

This equation can be integrated in quadratures with the aid of Eq. (2.1) if the pro-
jection of the controlling acceleration onto the normal to the trajectory of spacecraft motion

is ¥, = W, (). Kinematic Egs. (1.2) are integrable if the projection of the controlling ac-
celeration onto the binormal to the trajectory varies according to the law

W,= KV,2r (K = const) 2.3)
In this case, by virtue of the third and fourth equations of (1.1), we have
oy = Ko, (2.9

and the last two equations of (1.2) are reducible to an equation in total differentials, On
integrating the latter, we obtain

cosi — Ksinusini=£k, k=cosi, — K sin uysin i, (2.5)

We also note that by virtue of the second equation of (1.2), the argument { reaches its
extremal values iy when

v = om -+ mn (m=1,2, .., n
Egs. (2.5) then become
—( 4 KD+ %z, +- K* — k2 =0 (z, = cos i,) (2.6)
With allowance for (2.4) and (2.5) we can reduce the second eqnation of {1.2) to
dz
+V =1+ K)%2* + 2kz F K —

= — @,dt (x == cos i) 2.7

The quantity @y is a negative fanction of fixed sign, so that both sides of equation
(2.7) are always positive.

Since the differential dx changes sign when the argument x passes through the ex-
tremal value x = xs, and since the left side of (2.7) is always of fixed sign, we must break
up the integration limits, To ensure positiveness of the left side of (2.7) in various portions
of the orbit, we set

dx — dz sign
4V —(+ K®a® + 2kz 4 K> — k? VY — (1 + K?) &+ 2kx ++ K2— k?
sign 2" = sign (K cos u) >0 12.8)

We can now write the integral of the left side of (2.7) as

S S" dz sign (K cos u) (2.9
V—(A+K)2* 2%k + KB — &
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In the case of a circolar orbit @, = const and the right side of (2.7) can be integrated
in elementary fashion. If the orbit is nol circular, we must first express the time in terms of
the radins,

dt dr dr e _*

o —_— - F
= = e SIRA T {

Vy VV—v23

Here ¥V, is a function of the radius r which we know once we have integrated (2.2).
With allowance for (2.10) we can write the integral of the right side of (2.7) as
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This integral is easy to compute if the controlling acceleration normal to the trajectory
of motion is given by the law

W, = AV/r (4 = const) (2.12)
In fact, on integrating (2.2) we find in this case that

Ver =B — Ar, B = (Vo + A)ry (2.13)
and (2.11) becomes

J= S (B—Ar)drsignr’ (a=2h—A2,c_-—_...Bz)
r Var2+br+c b =2 (goRy® + AB)

From this expression we find that the extremal values of the radius r occur with
ar2 4 brg +c=0

Since the integrand in (2.11) is always of fixed sign, and since the differential dr
changes sign at the instant when r = ry, we must break up the limits of integration if r
passes through an extremum. To simplify our discussion, we assume everywhere from pow
on that the arguments x and r do not pass through extremal values x4 and re throughout the
entire time of action of the controlling accelerations W, and W, on the spacecraft. Here
sign o'==sign z," and sign r" = sign r,". Transfommg the fn'st two equations of (1.2)
we obtain

aQ . _ tgu

di  sing

With allowance for (2.5) and (2.8), we transform this equation into

Q__go:Sk (z — k) dx sign (K cos u)
(=*

Sy (e < FE =y o

Under the above assumption conceming the way in which the arguments x and r vary
during the action of the controlling accelerations, integration of (2.9) yields

J = . Sign (cos uo) [arcsin — {1+ K)cosi+k — arcgin — (1 + K% cos iy 4 k
Vitr * *

x=KV1F K — k)
and integration of (2.11) gives us
R . . br-} 2¢ . bro-}-2¢
J=signr arcsin —..._ =~ —arcsin —_"— | 4 = —b2
0 [( = roV:K) (@ <0, A=dac—b1 < 0)
(arcsin 2ar +5_ aresin 23703 ) ]

A
T y= V—r V=2
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. . . br42e ., Ore 4+ 2¢
J =signro (arcsm 2~ arcsin o2 ) -
{ r V—-* A ro '/ A

.._é__.._.ln 2'Va(ar”+br+c)+2ar+b] @>0)
Va 2Va(are-Fbro+ o) -+ 2are+ b

J == sign ry’ [2 (arctgﬂ%i‘.c — arctg J_/_.lf.'li‘_f) ._gbﬁi.(v br 4 ¢ —Vbro + c)] (a=0)

.

B

In the case of a circular orbit, i.e. when A =0, we have

-—=§’-° (t— to) (2.45)
From {2.10) we have ¢

ety slgnre [ya,z+b,+c_. Varg +bro+ ¢ +

2ar -+ b -2are - b
+ 2]/:5 V= — aresin V=% )] (80, ALO)

L g = sxgnro {]/ar’+br+c-—- Vargt +bro+c¢ —

( arcsin

b pn.2Va(ar4br+¢ +2ar+b] @>0)
ZVa Z'Va (arg® + bro 1+ ¢) -+ 2arg + b
t— = gi_‘z[(br—Zc) brFe—(bro— 20)¥Vbra 6]  (a=0)
and {2.14) yields
— O, = SigH {cO8 o) .4 (k10
2= 2 {arcsmx[ cosz+1+m+i+k]
- B4
arcsin = [ S rrertrnt
(k— 1)? _ (k—1)* .
+arcsmu[ s T 1+k] arcsmK[ m -4.;.};]}
In the special case where K'= 0, Egs. (1.2) and {2.4) yeild
t
Q=0 i=ip u— u-{,=-—§mzdt (2.18)

Recalling (2.10) and the last equation of (2.16), we find from {2.11) that
1 == ¥ - g

All of the possible orbits described by Formulas (2,15) are conic ssctions in the scan-
ning plane. The orientation of these sections varies with time,

the orbit is elliptical for 0 <0, A<0
the orbit is circular for a <0, A =0
the orbit ia parabolic fora =0

the orbit is hyperbolic for a> 0.

The motion of the orbital plane is characterized by the last formula of (2.15); its
character does not depend on the shape of the orbit, The set of Formulas (2.1), (2.5), (2.13)
and {2.15) enables us to predict the future parameters of the orbit and the position of the
spacecraft under action by the controlling acceleration W with the components ¥, = AV/r
and W, = KV, 2/r, and thus to effect the required control in the class of orbits whth a
constant energy integral,

3. For example, let us determine the transfer factors K and 4 for control laws (2.3}
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and (2.12) which ensare tranfer of the spacecraft from an elliptical orbit to a precalcula-~
ted circular orbit. From the angles {)4 and i, at the beginning of control and the angles

Q. and iz at the end of control we can determine the value of X which ensures coincidence
ol‘ the plane of the spacecraft orbit with the required plane by solving the last equation of
{2.15). According to the elliptical theory of motion, the radius of a circular orbit with a
prescribed energy integral is given by Formula

rg = —goReY/2h
the velocity on the orbit is
Vag=Vy= Vm
Having determined r; and ¥}, we can find the transfer factor 4 in accordance with
{2.13) from Formula

A= Vet — Voo
ro—~—Tx

On attainment of the equalities ) = {}, and § = i} 'the controlling acceleration W, is
terminated and the orientation of the orbital plane is recorded. On attainment of the equali-
ties r =7, and V, = V .k the controlling acceleration W, is terminated, and the shape of
the orbit is recorded (according to (2.13), the aréa integral becomes constant).

The method of determining the factor X remains similar to the above in the other pos-
sible cases of controlled motion. The factor 4 ia determined from the prescribed value of
srea integral {2.13) at the end of the controlled motion and from the orientation of the o.bit
of precalculated shape in space.

BIBLIOGRAPHY

1. Illarionov, V.F, and Shkadov, L.M., Rotation of the plane of a circular satellite orbit.
PMM Vol. 26, No. 1, 1962,

2. Gus’kov, Iu.P., A method of orientating the plane of a circular orbit of a satellite.
PMM Vol. 27, No. 3, 1963.

4. Lass, H, and Solloway, C.B., Motion of a satellite under the influence of constant
normal thrust. ARS Journal Vol. 32, No. 1, 1962.

5. Kopnin, Ju.M., On the problem of tura the orbit plane of a satellite. Koamich. Issled.
Vol. 3, No. 4, 1965,

Translated by A.Y.



